今天小编分享的综合百科:数学思想方法 ,数学思想方法有哪七种,更高更妙的高中数学思想与方法,数学思想方法有哪些,欢迎阅读。
数学思想方法有哪七种
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
4、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
5、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
6、配方法
将一个式子设法构成平方式,然后再进行所需要的转化。当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。
7、待定系数法法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待定的字母的值就可以了,为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。
更高更妙的高中数学思想与方法
1、高屋建瓴——重视数学思想的渗透,在数学学习中,单纯靠题海战术盲目操练是很难获得理想成绩的,我们必须将自己置身于解题的更高境界。高中数学学习的更高境界主要是指运用数学思想武装自已,并有效地指导解题。数学《考试大纲》中指出:“数学思想和方法是数学知识在更高层次的抽象和概括。它蕴涵在数学知识的发生、发展和应用的过程中。”如果说数学知识是数学内容,可用文字和符号来记录和描述,那么数学思想则是数学意识,只能领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决。
2、独辟蹊径——将数学竞赛知识与高考数学有机结合起来,高考数学命题遵循考试大纲和教学大纲,体现“基础知识全面考,主干内容重点考,热点知识反复考,冷点知识有时考”的命题原则。从解答策略上来说,高考一般淡化解题中的特殊技巧,比较注重在解题的通性通法上精心设计。但是认真分析近几年的高考试题,尤其是压轴题,我们不难发现,有很多问题又很难用“通性通法”顺利解决。因此,在平时学习中,对于学有余力的同学来说,有必要适当掌握一些“竞赛”的方法或技巧,只有这样,才能真正在高考中做到处变不惊,游刃有余。
数学思想方法有哪些
1、函数思想。把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。
2、数形结合思想。把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答。
3、整体思想。整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
4、转化思想。在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。
5、类比思想。把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么推断它们在其他方面也可能有相同或类似之处。
免责声明:本网所有内容(包括且不仅限于图文音视频)均由用户自行上传分享,仅供个人学习交流分享。如侵害到您的权利,请联系:[email protected]