今天小编分享的综合百科:关于数学的手抄报资料 ,关于数学的手抄报资料,关于数学的手抄报资料的内容,关于数学手抄报的资料,欢迎阅读。
关于数学的手抄报资料
1、数学发展历史:
数学源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικ(ta mathēmatiká).
2、在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。
3、数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
4、基础数学的知识与运用是个人与团体生活中不可或缺的.一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态。
5、代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支。
6、直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分。
7、现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)
8、数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。
关于数学的手抄报资料的内容
1、中考数学填空题解题技巧
(1)攻略一:概念记清,基础夯实。数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是“不定项选择题”就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的四本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
(2)攻略二:适当做题,巧做为王。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。中考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
(3)攻略三:前后联系,纵横贯通。在做题中要注重发现题与题之间的内在联系,绝不能“傻做”。在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。
(4)攻略四:记录错题,避免再犯。俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的陷阱里。因此,我建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考当中是“分分必争”,一分也失不得。
(5)攻略五:集中兵力,攻下弱点。每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”。
2、高考数学复习切记“三多三少”
(1)多理解,少记忆:其实我们在复习过程中往往是按知识点构建知识框架,如复习函数性质时按照函数单调性、奇偶性、值域、图像等知识点分别讲解、训练;复习数列极限时根据求数列极限的类型和方法,进行一些题型训练等,这些都是必须的,但还远远不够。比如复习反函数不仅要记住如何求反函数,而且更要知道为什么要研究反函数,原来函数与反函数的图像各有什么特征、关系是什么。
(2)多动脑,少依赖:纵观高考试题,真正不会做的题目并不多,但会做而拿不到分数的情况却很常见,原因就在于运算能力薄弱。
要提高运算能力,首先要强化运算意识,认识到运算的重要性;其次,静下心来先从提高正确率入手,在此基础上再提高运算速度;再次,最大限度利用人脑。
(3)多通法,少技巧:纵观多年的高考题,虽然题目、题型在变,但对解决数学问题的通性通法没变。所谓通性通法,通俗地讲就是解决问题的常规思路、常用方法,如有一年的高考理科第20题数列问题,条件给出sx与ax的一个关系,要研究该数列的性质。:平时的复习应重在对通性通法的掌握,在解题中强化通法。
关于数学手抄报的资料
1、一元钱哪里去了
三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员的2元总共29元。那一元钱到哪去了?
2、分苹果
小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。小咪的爸爸是怎样做的呢?
3、小马虎数鸡
春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?
4、奇妙的“5”
5与任何奇数相乘其末尾数是5,而5既是自生数又是自补数,52=25,5+5=10,这一性质称自补数,而52的末位数又再现了5,这一性质称自生数。还有许多这样的数:如5,25,625,90625都是自生数,而像5、75、375、9375则是自补数。
在复杂神秘的几何中,像正五边形、五角形都与5密切联系,不可分割。特别是五角星具有稳定性,它的五个角均匀分布在五个方向上,下边两个角、左右两个角、上边一个角,给人一种绝对的和谐美感,我们的国旗就采用了五角星作图案的,组成了一个漂亮的图形。这是因为,在五角星中,有许多黄金分割点,表现了有变化的统一,显示了其内部点系的和谐。
5、数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
免责声明:本网所有内容(包括且不仅限于图文音视频)均由用户自行上传分享,仅供个人学习交流分享。如侵害到您的权利,请联系:[email protected]